Research Papers

1. M. Murillo Arcila and Alfred Peris Strong mixing measures for linear operators and frequent hypercyclicicity. J. Math. Anal. Appl. , 398 (2013) 462-465. Posición: 33/302 Mat. Tercil 1 ( Q1).

2. M. Murillo Arcila and Alfred Peris. Mixing properties of nonautonomous linear dynamics and invariant sets. Appl. Math. Lett. , 26(2013) 215-218. Posición: 37/251. Mat Apl. Tercil 1 (D1+ Q1).

3. S.Bartoll, F. Martínez Giménez, M. Murillo Arcila and Alfred Peris. Cantor sets, Bernouilli shifts and linear dynamics. Springer Proceedings in Mathematics and Statistics , 80 (2014) 195-207.

4. E. Mangino and M. Murillo Arcila. Frequently hypercyclic translation semigroups. Studia Mathematica 227 (3), (2015) 219-238. Posición: 152/312 Mat. Tercil 2 ( Q2).

5. M. Murillo Arcila and Alfred Peris. Chaotic behaviour of linear operators on invariant sets. Integr. Equ. Oper. Theory 81 (2015), 483-497. Posición: 67/312 Mat. Tercil 1 ( Q1).

6. M. Murillo Arcila and Alfred Peris. Strong mixing measures for C0 -semigroups. RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 109 (1), (2015) 101-116. Posición: 223/312 Mat. Tercil 3 ( Q3).

7. X. Barrachina, J.A. Conejero, M. Murillo Arcila and J.B. Seoane-Sepúlveda. Distributional chaos for the Forward and Backward Control trac model. Linear Algebra Appl. 479 (2015), 202-215. Posición: 64/312 Mat. Tercil 1 ( Q1).

8. J.A. Conejero, G.A. Muñoz-Fernández, M. Murillo Arcila and J.B. Seoane-Sepúlveda. Smooth functions with uncountably many zeros. Bull. Belg. Math. Soc. Simon-Stevin 22 (2015), 15. Posición: 212/312 Mat. Tercil 3 ( Q3).

9. P. Jiménez-Rodríguez, G.A. Muñoz-Fernández, M. Murillo Arcila and J.B. Seoane-Sepúlveda. Sharp values for the constants in the polynomial Bohnenblust-Hille inequality. Linear Multilinear Algebra, 64(9) (2016), 1731-1749. Posición: 62/311 Mat. Tercil 1 ( Q1).

10. J.A. Conejero, M. Murillo Arcila and C. Lizama. On the existence of chaos for the ViscousVanWjingaarden Equation. Chaos, Solitons and Fractals, 89 (2016),100-104. Posición: 44/100. Mat. Interdisciplinar. Tercil 2 ( Q2).

11. J.A. Conejero, Marko Kostic, Pedro J. Miana and M. Murillo Arcila. Distributionally chaotic families of operators on Fréchet spaces. Commun. Pure Appl. Anal., 15(5) (2016), 1915-1939. Posición: 103/311 Mat. Tercil 1 ( Q2).

12. Enrique Hernández-Orallo, M. Murillo Arcila, Carlos T. Calafate, Juan Carlos Cano,J.A. Conejero and Pietro Manzoni. Analytical Evaluation of the Performance of Contact-Based Messaging Applications. Computer Networks, 111 (2016), 45-54. Posición:13/52 .Computer Science. Tercil 1 (D1+ Q1).

13. J.A. Conejero, M. Murillo Arcila and J.B. Seoane-Sepúlveda. Linear Chaos for the Quick- Thinking-Driver model. Semigroup Forum 92(2) (2016), 486-493. Posición: 201/311 Mat. Tercil 2 ( Q3).

14. C. Lizama and M. Murillo Arcila. Maximal regularity in lp spaces for discrete time fractional shifted equations. J. Differential Equations, 263 (2017), 3175-3196. Posición:13/311 Mat. Tercil 1 (D1+ Q1).

15. C. Lizama and M. Murillo Arcila. lp -maximal regularity for a class of fractional difference equations on UMD spaces. The case 1 < alpha< 2 . Banach J. Math. Anal., 11(1) (2017), 188-206. Posición: 90/311 Mat. Tercil 1 ( Q2).

16. J.A. Conejero, Mar Fenoy, M. Murillo Arcila and J.B. Seoane-Sepúlveda. Lineability within probability theory settings. RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat.Ser. A Mat., 111 (2017), 673-684.Posición:140/311 Mat. Tercil 2 ( Q2).

17. J.A. Conejero, C. Lizama and M. Murillo Arcila. Chaotic semigroups from second order partial differential equations. J. Math. Anal. Appl, 456 (1) (2017), 402-411. Posición:53/311 Mat. Tercil1 ( Q1).

18. C. Lizama, J. Alberto Conejero, M. Murillo Arcila and A. Peris. Linear dynamics of semigroups generated by differential operators. Open Math., 15 (2017), 745-767. Posición: 141/311 Mat. Tercil 2( Q2).

19. Chung-Chuan Chen, J. Alberto Conejero, Marko Kostic and M. Murillo Arcila. Dynamics of multivalued linear operators. Open Math., 15 (2017), 948-958. Posición:141/311 Mat. Tercil 2 ( Q2).

20. Enrique Hernández-Orallo, M. Murillo Arcila, Juan-Carlos Cano, Carlos T. Calafate, J. Alberto Conejero and Pietro Manzoni. An Analytical Model Based on Population Processes to Characterize Data Dissemination in 5G Opportunistic Networks. IEEE Access, 6 (2018), 1603-1615. Posición:27/146.Computer Science. Tercil 1 ( Q1).

21. L. Abadias, C. Lizama and M. Murillo Arcila. Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay. Commun. Pure Appl. Anal., 17(1) (2018), 243-265. Posición:105/312.Mat. Tercil 1 ( Q2).

22. C. Lizama and M. Murillo Arcila. Well posedness for semidiscrete fractional Cauchy problems with finite delay. J. Comp. Appl. Math., 339 (2018), 356-366. Posición:47/254.Mat. Apl. Tercil 1 ( Q1).

23. L. Bernal, J.A. Conejero, M. Murillo Arcila and J.B. Seoane-Sepúlveda. Highly tempering infinite matrices. RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 112(2) (2018), 341-345. Posición: 87/313. Mat. Tercil 1 ( Q2).

24. Claudio Leal, C. Lizama and M. Murillo Arcila. Lebesgue regularity for dierential difference equations with fractional damping. Math Meth Appl Sci., 41 (2018), 2535-2545.Posición:70/254.Mat. Apl. Tercil 1 ( Q2).

25. A. Miralles, M. Murillo Arcila and M. Sanchis. Sensitive dependence for nonautonomous dynamical systems. J. Math. Anal. Appl., 463(1) (2018), 268-275. Posición: 65/313. Mat.Tercil 1 ( Q1).

26. Chung-Chuan Chen, J. Alberto Conejero, Marko Kostic and M. Murillo-Arcila. Dynamics on binary relations over topological spaces. Symmetry, 10(6) (2018), 211. Posición: 29/64. Ciencias Interdisciplinar. Tercil 2 ( Q2).

27. Claudio Leal, C. Lizama and M. Murillo Arcila. Lebesgue regularity for nonlocal time-discrete equations with delays. Fract. Calc. Appl. Anal., 21(3) (2018), 696-715. Posición: 6/313. Mat. Tercil 1 (D1+ Q1).

28. J.A. Conejero, Enrique Hernández-Orallo, M. Murillo-Arcila and Pietro Manzoni. A SIR-based model for contact-based messaging applications supported by permanent infrastructure. Discrete Contin. Dyn. Syst. Ser. S., 12(4&5) (2019), 735-746. Posición:121 /260. Mat. Apl. Tercil 2 (Q2).

29. J.A. Conejero, C. Lizama, M. Murillo Arcila and J.B. Seoane-Sepúlveda. Well-posedness for degenerate third order equations with delay and applications to inverse problems. Israel J. Math., 229 (2019), 219-254. Posición: 136/324. Mat. Tercil 2 ( Q2).

30. L. Bernal, J.A. Conejero, M. Murillo Arcila and J.B. Seoane-Sepúlveda. [S]-linear and convex structures in function families. Linear Algebra Appl., 579 (2019), 463-483. Posición: 115/324. Mat. Tercil 1 (Q2).

31. C. Lizama and M. Murillo Arcila. Maximal lp-regularity for discrete time volterra equations with delay. J. Differ. Equ. Appl., 25(910) (2019), 1344--1362. Posición: 131/260. Mat. Tercil 2 ( Q2).

32. C. Lizama and M. Murillo Arcila. Discrete maximal regularity for Volterra equations and nonlocal time-stepping schemes. Discrete Contin. Dyn. Syst., 40(1) (2020), 509-528. Posición: 64/324. Mat. Tercil 1 ( Q1).

33. M. J. Beltrán-Meneu, E.Jordá and M. Murillo Arcila. Supercyclicity of weighted composition operators on spaces of continuous functions. Collect. Math., 71(2020), 493-509. Posición: 170/324. Mat. Tercil 1 ( Q2).

34. L. Bernal, M. C. Calderón-Moreno, M. Murillo Arcila and J.A. Prado-Bassas. Undominated sequences of integrable functions. Mediterr. J. Math., 17, 179(2020). https://doi.org/10.1007/s00009-020-01631-2. Posición: 79/324. Mat. Tercil 1 ( Q1).

35. C. Lizama and M. Murillo Arcila. Lp - Lq-well posedness for the Moore-Gibson-Thompson equation with two temperatures on cylindrical domains. Mathematics, 8 (2020), 1748. Posición: 28/324. Mat. Tercil 1 ( D1+ Q1).

36. C. Lizama, M. Murillo Arcila and A. Peris. Nonlocal operators are chaotic. Chaos, 30, 103126 (2020).Posición: 16/260. Mat. Apl. Tercil 1 ( D1+ Q1).

37. C. Lizama and M. Murillo Arcila. Lp -Lq-maximal regularity of Van Wjingaarden-equation in a cylindrical domain. Adv. Differ. Equ., 2020, 2020(1), 591. https://doi.org/10.1186/s13662-020-03054-5. Posición: 14/324. Mat. Tercil 1 ( D1+ Q1).

38. I. Girona and M. Murillo Arcila. Maximal lp-regularity of multi-term fractional equations with delay.Math Meth Appl Sci., 44(1)(2021), 853-864. Posición: 29/267. Mat. Apl. Tercil 1(Q1).

 39. P. Kumar, V. S. Ertuk and M. Murillo Arcila. A new fractional mathematical modelling of COVID-19 with the availability of vaccine. Results in Physics, 24(2021) 104213.Posición: 23/86. Fís. Mult. Tercil 1 ( Q1).

40. P. Kumar, V. S. Ertuk and M. Murillo Arcila. A Complex Fractional Mathematical Modelling for the Story of Layla and Majnun. Chaos, Solitons and Fractals, 150(4) (2021) 111091. Posición: 1/108. Mat. Interdisciplinar. Tercil 1 ( Q1+D1).

41. P. Kumar, V. S. Ertuk, M. Murillo Arcila, R. Banerjee and A. Manickam. A case study of 2019-nCOV cases in Argentina with the real data based on daily cases from March 03, 2020 to March 29, 2021 using classical and fractional derivatives. Adv. Differ. Equ., 2021, (2021)(1), 341. Posición: 5/332. Mat. Tercil 1 ( D1+ Q1).

42. C. Lizama and M. Murillo Arcila. Well posedness for a fourth-order equation of Moore-Gibson- Thompson type. Electron. J. Qual. Theory Differ. Equ. 81(2021), 1–18. Posición: 94/332. Mat. Tercil 1 ( Q2).

43. F. García-Pacheco, A. Miralles and M. Murillo Arcila. Invertibles in topological rings: A new approach. RACSAM, (2022) 116(1), 38. Posición: 26/332. Mat. Tercil 1 ( D1+ Q1).

44. F. García-Pacheco, R. Kama and M. Murillo Arcila. Vector-valued spaces of multiplier statistically convergent series and uniform convergence. Results in Math. (2022) 77:43. Posición: 27/332. Mat. Tercil 1 ( Q1).

45. C. Lizama and M. Murillo Arcila. On a connection between the N-dimensional fractional Laplacian and 1 -D fractional operators on lattices. J. Math. Anal. Appl. 511 (2022) 126051. Posición: 77/332. Mat. Tercil 1 (Q1).

46. C. Lizama and M. Murillo Arcila. Maximal regularity for time-stepping schemes arising from convolution quadrature of non-local in time equations. Discrete Contin. Dyn. Syst., 42(8) (2022) 3787-3807. Posición: 64/332. Mat. Tercil 1 (Q1).

47. C. Leal and M. Murillo Arcila. Existence and uniqueness of solutions for a class of discrete-time fractional equations of order 2 < alpha <3 . Appl. Math. Optim.,  86:1 (2022) 1-21. Posición: 62/267. Mat. Aplicada. Tercil 1 (Q1).

 48. C. Lizama, M. Murillo Arcila and M. Trujillo. Fractional Beer-Lambert law in laser heating of biological tissue. AIMS Mathematics, 7(8) (2022) 14444-14459. Posición: 16/332. Mat. Tercil 1 (Q1+D1).

49. V. S. Ertuk, A.K. Alomari, P. Kumar and Marina Murillo Arcila. Analytic solution for the strongly nonlinear multi-order fractional version of a BVP occurring in chemical reactor theory. Discrete Dynamics in Nature and Society, (2022) Article ID 8655340, 9 pages. Posición: 50/73. Ciencias Mult. Tercil 3 (Q3).

50. P. Kumar, V. S. Ertuk, Marina Murillo Arcila and C. Harley. Generalised forms of fractional Euler and Runge-Kutta methods using non-uniform grid. Int. J. Nonlinear Sci. Numer. Simul., (2022), https://doi.org/10.1515/ijnsns-2021-0278.. Posición: 67/267. Mat. Apl. Tercil 1(Q1).

 51. M. Murillo Arcila. Well-posedness for the fourth-order Moore-Gibson-Thompson equation in Hölder Continuous Function Spaces. Math Meth Appl Sci., 46(2) (2022), 1928–1937. Posición: 29/267. Mat. Apl. Tercil 1(Q1).

 52. C. Lizama and M. Murillo Arcila. The semidiscrete damped wave equation with a discrete fractional Laplacian. Proc. Amer. Math. Soc., 151(5) (2023), 1987–1999. Posición: 166/332. Mat. Tercil 2 (Q2).

 53. P. Kumar, V. S. Ertuk, M. Murillo Arcila, and V. Govindaraj. A new version of L1-Predictor-Corrector method to solve multiple delay-type fractional order systems with the example of a neural network model. Fractals, 31(4)(2023), 2340043 (13 pages).1. Posición: 10/108. Mat. Ciencias. Int. Tercil 1 (Q1+D1).

54. C. Lizama and M. Murillo Arcila. On the dynamics of the Damped Extensible Beam 1D-equation. J. Math. Anal. Appl., 522 (2023) 126954. Posición: 77/332. Mat. Tercil 1 (Q1).

55. C. Lizama and M. Murillo Arcila. Periodic solutions for the Blackstock-Crighton-Westervelt equation. Nonlinear Anal.-Theory Methods Appl., 232 (2023) 113277. Posición: 55/333. Mat.  Tercil 1 (Q1).

Submitted papers:

56.E. Alvarez, C. Lizama and M. Murillo Arcila. Strongly $L_p$ well-posedness for abstract time-fractional Moore-Gibson-Thompson type equations.

57.E. Alvarez, C. Lizama and M. Murillo Arcila. Hölder regularity for nonlocal abstract Moore-Gibson-Thompson type equations.

58.F. García-Pacheco, M. A. Moreno-Frías and M. Murillo Arcila. Topological ordered rings and measures.

59.M. Murillo Arcila, A. Peris and A. Vargas. Chaotic finite difference operators.





Research projects

  • Operator theory: An interdisciplinary approach. ProyExcel_00780 financed by Junta de Andalucía. Main researchers: Fernando León Saavedra and Francisco García Pacheco.
  •  Functional Analysis, Dynamics of Operators and Applications (FADOA). PROMETEU/2021/070 financed by Generalitat Valenciana (Project PROMETEO). Main researchers: Marina Murillo Arcila and Alfredo Peris.
  • Operator Dynamics. PID2019-105011GB-I00 financed by Ministry of Economy and Competivity. Main researchers: Marina Murillo Arcila and Alfredo Peris.
  • Differential equations, discrete dynamical systems, neural networks: a perspective from Fuzzy Analysis. GVA/2018/110 financed by Generalitat Valenciana (Emerging research groups) Main researcher: Marina Murillo Arcila.
  • Operator Dynamics. MTM2016-75963-P financed by Ministry of Economy and Competivity. Main researchers: Alfredo Peris and Jose Alberto Conejero.
  • Excelence Project Severo Ochoa SEV-2013-0323. Main researcher: Luis Vega
  • Geophysical Exploration using Advanced Galerkin Methods (GEAGAM) H2020-644202. Main researcher: David Pardo.
  • Functional Analysis, Operator Theory and aplications. GV Prometeo/2008/101 financed by Generalitat Valenciana (Project PROMETEO). Main researcher: José Bonet Solves.
  • Hipercyclicity and chaos for operators. MTM-2011-14909 financed by Ministry of Education and Sciences. Main researcher: Alfredo Peris.
  • Hipercyclicity and chaos for operators. MTM2013-47093-P financed by Ministry of Education and Sciences. Main researcher: Alfredo Peris.
  • Sculptural modelling of complex sculptural forms. Interdisciplinary experimental research of contemporary and mathematical art SP20120570 financed by Universitat Politècnica de València. Main researcher: Elías Miguel Pérez García